翻訳と辞書 |
Hilbert's inequality : ウィキペディア英語版 | Hilbert's inequality In analysis, a branch of mathematics, Hilbert's inequality states that : for any sequence ''u''1,''u''2,... of complex numbers. It was first demonstrated by David Hilbert with the constant 2 instead of ; the sharp constant was found by Issai Schur. It implies that the discrete Hilbert transform is a bounded operator in ''ℓ''2. ==Formulation==
Let (''u''''m'') be a sequence of complex numbers. If the sequence is infinite, assume that it is square-summable: : Hilbert's inequality (see ) asserts that :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Hilbert's inequality」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|